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1. Loop Integrals in Dimensional Regularization
We are to verify the identity ∫

ddq

(2π)d

(d− 2n)q2 − dm2

(q2 −m2)n+1
= 0.

Noting the results of homework 6 and the elementary properties of the Γ-function, we may proceed
directly.
∫

ddq

(2π)d

(d− 2n)q2 − dm2

(q2 −m2)n+1
= (d− 2n)

(−1)ni

(4π)d/2

d

2
Γ

(
n− d

2

)

Γ(n + 1)
1

(m2)n−d/2
− dm2 (−1)n+1i

(4π)d/2

(
n + 1− d

2

)

Γ(n + 1)
1

(m2)n+1−d/2
,

=
(−1)ni

(4π)d/2

d

Γ(n + 1)

[
(d/2− n)

Γ
(
n− d

2

)

(m2)n−d/2
+ m2 Γ

(
n + 1− d

2

)

(m2)n+1−d/2

]
,

=
(−1)ni

(4π)d/2

d

Γ(n + 1)
1

(m2)n−d/2
[−(n− d/2)Γ(n− d/2) + Γ(n + 1− d/2)] ,

=
(−1)ni

(4π)d/2

d

Γ(n + 1)
1

(m2)n−d/2
[−Γ(n + 1− d/2) + Γ(n + 1− d/2)] ,

= 0.

∴
∫

ddq

(2π)d

(d− 2n)q2 − dm2

(q2 −m2)n+1
= 0. (1.a)

‘óπερ ’έδει δε�ιξαι

Let us now evaluate the following loop integral,

I(p2,m2
1,m

2
2) = −ie2

∫
ddq

(2π)d

1
((q + p/2)2 −m2

1 + iε)((q − p/2)2 −m2
2 + iε)

.

To evaluate this integral lucidly, let us first introduce the change of variables k ≡ q+p/2. Introducing
the Feynman parameter x, the integral becomes,

∫ 1

0

dx

∫
ddk

(2π)d

1
[x((k − p)2 −m2

2 + iε) + (1− x)(k2 −m2
1 + iε)]2

.

Introducing the variables,

` ≡ k − xp and ∆ ≡ x(x− 1)p2 + xm2
2 + (1− x)m2

1,

we see that

I(p2, m2
1, m

2
2) =

∫ 1

0

dx

∫
dd`

(2π)d

1
[`2 −∆ + iε]2

,

=
∫ 1

0

dx

[
i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2

]
,

∼
d→4

i

(4π)2

∫ 1

0

dx

[
2
ε
− log ∆− γE + log(4π) +O(ε)

]

∴ I(p2,m2
1,m

2
2) ∼

d→4

i

(4π)2

∫ 1

0

dx

[
2
ε

+ log
1

x(x− 1)p2 + xm2
2 + (1− x)m2

1

− γE + log(4π)
]
. (1.b)
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The One-Loop Structure of Quantum Electrodynamics
While studying the superficial divergences of quantum electrodynamics, we noted that gauge invariance–

and hence the Ward identity–made several superficially divergent diagrams either converge or vanish.
We are to verify these claims explicitly.

Superficially, the one-point function of the photon has a cubic divergence. Let us demonstrate that
in fact, to the one-loop order, the one-point function of the photon vanishes.

To one-loop order, we see that� =�
k

−→qThe amplitude for the above diagram is given by

iM = (−1)ε∗µ(q)
∫

ddk

(2π)d
Tr

[
i(6k + me)

(k2 −m2
e + iε)

(−ieγµ)
]
,

= −ε∗µ(q)e
∫

ddk

(4π)d

Tr (6kγµ + mγµ)
(k2 −m2

e + iε)
,

= −ε∗µ(q)4e

∫
ddk

(4π)d

kµ

(k2 −m2
e + iε)

,

= 0.

Therefore, to one-loop order, � = 0. ‘óπερ ’έδει δε�ιξαι

Similarly, we argued that although the photon three-point function has a superficial, linear divergence,
its amplitude should also vanish. Let us now demonstrate this fact.

To one-loop order, we see that

�=�k3

k2

k1

ρ
ν

µ

+�
−k2

−k1 −k3

ρ
ν

µ

Note that the second diagram has been labeled the same as the first diagram but with relative minus
signs on the momenta k. This is because the Feynman propagator has the property thatfa−→kf =

i(6k + me)
(k2 −m2

e + iε)
whereas fa←−kf =

i(−6k + me)
(k2 −m2

e + iε)
.

Let us consider the evaluation of the first diagram. Its amplitude is proportional to integration over

Tr [γµ(6k1 + me)γν(6k2 + me)γρ(6k3 + me)] .

Because only those traces over an even number of γ -matrices are non-vanishing, this is equal to

Tr [γµ 6k1γ
ν 6k2γ

ρ 6k3] + m2
e (Tr [γµ 6k1γ

νγρ] + Tr [γµγν 6k2γ
ρ] Tr [γµγνγρ 6k3]) .

Notice that the only remaining traces involve an odd number of momenta k.
Similarly, we see that the amplitude of the second diagram is proportional to integration over

Tr [(−6k3 + me)γρ(−6k2 + me)γν(−6k1 + me)γµ] = −Tr [6k3γ
ρ 6k2γ

ν 6k1γ
µ]−m2

e (Tr [6k3γ
ργνγµ] + Tr [γρ 6k2γ

νγµ] Tr [γργν 6k1γ
µ]) .

But, noting identity (5.7) of Peskin and Schroeder, the traces of each expression are equal. Therefore,
the negative contribution from the second diagram cancels the contribution from the first.

�
−k2

−k1 −k3

ρ
ν

µ

= −�k3

k2

k1

ρ
ν

µ

.

Therefore, to one-loop order, �= 0.
‘óπερ ’έδει δε�ιξαι
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Lastly, our analysis showed that the photon four-point function has a logarithmic, superficial diver-
gence, but by gauge invariance this amplitude is convergent. We are to demonstrate that the photon
four-point function does not diverge to the one-loop order in perturbation theory.

To one-loop order, we see that

I II III IV V VI

�=�σ

ρ
ν

µ

+�σ

ρ
ν

µ

+�σ

ρ
ν

µ

+�σ

ρ
ν

µ

+�σ

ρ
ν

µ

+�σ

ρ
ν

µ

(µ ν ρ σ) (σ ρ ν µ) (µ σ ν ρ) (ρ ν σ µ) (µ ν σ ρ) (ρ σ ν µ)
Because it is our task to demonstrate that the above amplitude converges–rather than actually com-

pute the amplitude–we may make several helpful simplifications. To illustrate the first major simplifi-
cation, let us analyze the first diagram, (I).

�
p3 p4

p1 p2
k − p1

k − p3 − p4

k − p3

k
σ

ρν

µ
= −e4

∫
ddk

(2π)d

Tr [(6k−6p1 + me)γµ(6k + me)γν(6k−6p3 + me)γρ(6k−6p3−6p4 + me)γσ]
((k − p1)2 −m2

e)(k2 −m2
e)((k − p3)2 −m2

e)((k − p3 − p4)2 −m2
e)

,

= −e4

∫
ddk

(2π)d

Tr [6kγµ 6kγν 6kγρ 6kγσ]
(k2 −m2

e)4
+ finite terms.

Therefore, we see that the divergent part of each diagram is a function of only the order of γ-matrices
in the trace.

Now, we claim that the divergence of diagram (I) is the same as (II), (III)∼(IV), and (V)∼(VI). First,
note that the relative change of sign for the loop momentum k between each pair will not change the
divergence of the diagram because each involves only k4 = (−k)4. Secondly, the ordering of the vertices
are precisely reversed for each pair and so by identity (5.7) of Peskin and Schroeder they are equal.
Therefore the total divergence of these six diagrams will be twice that of (I), (III), and (V) alone.

Let us continue to compute the divergence of diagram (I) before illustrating the sum of all six di-
agrams. Because, as we will show, the sum of the diagrams will converge, we will continue without
dimensional regularization.1

In our calculation below, we will repeatedly make use of γ-matrix algebra proved in homework (in-
cluding that of semester I). Also, note our use of identity (A.42) from Peskin and Schroeder. Let us
begin to evaluate the divergence of diagram (I). The integrand is proportional to

Tr [6kγµ 6kγν 6kγρ 6kγσ] = kαkβkγkδTr
[
γαγµγβγνγγγργδγσ

]
,

→ 1
d(d + 2)

(k2)2 (gαβgγδ + gαγgβδ + gαδgβγ)Tr
[
γαγµγβγνγγγργδγσ

]
,

∝ Tr[γγµγ γν γγργ γσ] + Tr[γγµγγνγγργ γσ] + Tr[γγµγγνγγργ γσ],

= Tr[(−2γµ)γν(−2γρ)γσ] + Tr[(−2)γνγγµγργ γσ] + Tr[γγµ(−2γν)γργ γσ],

= 4Tr[γµγνγργσ]− 2Tr[γν4gµργσ]− 2Tr[−2γργνγµγσ],

= 8Tr[γµγνγργσ]− 8gµρTr[γνγσ],

= 32 (gρσgµν − gνσgµρ + gµσgνρ)− 32gµρgνσ,

∝ (gµνgρσ − 2gµρgνσ + gµσgνρ) .

Therefore, when we evaluate the amplitude for all six diagrams, the divergent integral will be over
a term proportional to (gµνgρσ − 2gµρgνσ + gµσgνρ) together with the analogous terms under the other
two distinct permutations. Therefore, the amplitude’s divergence will be proportional to,

(gµνgρσ − 2gµρgνσ + gµσgνρ) + (gµρgνσ − 2gµνgρσ + gµσgρν) + (gµνgρσ − 2gµσgνρ + gµρgνσ) = 0.

Therefore, the photon’s four-point function is convergent to loop-order in QED. ‘óπερ ’έδει δε�ιξαι

1It is easier for our purposes to work with d = 4 trace-algebra. Because the total divergence will vanish in d = 4, it
must also vanish in general dimensional regularization.
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The β-function of Quantum Chromodynamics
We are given that, at one-loop order in perturbation theory, the divergent parts of the counter terms

of quantum chromodynamics are

δ1 = −7
2

g2

(4π)2
log

Λ2

M2
, δ2 = −1

2
g2

(4π)2
log

Λ2

M2
, and δ3 =

(
5− 2

3
nf

)
g2

(4π)2
log

Λ2

M2
,

where the δi are defined in analogy to quantum electrodynamics. We see that these directly imply that

Bg =
7
2

g2

(4π)2
, Af = −1

2
g2

(4π)2
, and Agl =

(
5− 2

3
nf

)
g2

(4π)2
,

where Af corresponds to fermion self-energy and Agl corresponds to gluon self-energy.
Let us now compute the β-function for the strong coupling g. This corresponds to the diagram,

�
δ2

δ1

δ2

δ3

Therefore, because βg = −2gBg − 2gAF − gAgl, we see that

∴ βg = −
(

11− 2
3
nf

)
g3

16π2
. (3.a)

In homework 10, we computed the general running coupling constat associated with quantum chro-
modynamics. To relate that result with our work here, we should set the undetermined constant β1 to(
11− 2

3nf

)
. So from our results of homework 10, we see that the square of the running coupling g is

∴ g2 =
g2

1 + g2

8π2

(
11− 2

3nf

)
log(p/M)

. (3.b)

We see that the coupling constant will be asymptotically free if 11 > 2/3nf . This is because asymptotic
freedom is directly a result of a negative β-function. It is clear that βg < 0 only if nf < 33/2 = 16.5.
Also, again by the results of homework 10, we see that at large energy (p/M → ∞), the square of the
coupling constant can be approximated by

g2 ≈
p
M→∞

8π2

(
11− 2

3nf

)
log(p/M)

. (3.c)
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